If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x^2)+19x+12=0
a = 4; b = 19; c = +12;
Δ = b2-4ac
Δ = 192-4·4·12
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-13}{2*4}=\frac{-32}{8} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+13}{2*4}=\frac{-6}{8} =-3/4 $
| 9z-7=10 | | x/9–50=10 | | 100x…………=670 | | 7(x–2)+135(2x+3)–7=0 | | 2/x-15=5/x | | 6t+3=21 | | 12x+(4×+96)=0 | | 5m-30=50 | | 8m+120=120 | | (3x-1)^2=x(2+3)+7 | | 25+9*x=34 | | -4x-12=-2x-24 | | -2y=6y-3y=34 | | 2x-38=66 | | u-8=17 | | 12x+20=6x+14 | | 20+10*x=50 | | 12x+3=6x+57 | | 32×2^x=16 | | 0/11−2a=6 | | 3y-13=17y= | | 14a-6a-7a-2a=10 | | 2*x-45=-39 | | 2•x-45=-39 | | 7a+4=5+7a | | 0.5a+1=(2a-1)/3 | | 0.5a+1=(2a-1/3 | | 0.5a+1=(2a-1)/3 | | 0.5a+1=2a-1/3 | | 14x+2=13x | | x/2+3-3=5-3 | | 6x−8=-6x+28 |